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Abstract
An analysis is provided of the splitting due to tunnelling of the energy levels
in two-dimensional double-disk potentials. The formal setting of this problem
is similar to that of tunnelling between tori in the near-integrable regime but is
free of the difficulties arising from the existence of natural boundaries that are
generic to such problems, enabling a systematic investigation of the relevant
semiclassical theory. The semiclassical predictions are found to be consistent
with exponentially accurate results obtained following reduction to a boundary-
value problem. A numerical quantization is also performed and found to agree
with the approximate results.

PACS numbers: 03.65.Sq, 84.40.Az, 42.81.Qb

1. Introduction

Recently, Pance et al [1] have measured the shifts in the microwave resonant frequencies of
multiple dielectric discs that occur due to evanescent coupling between them. The theoretical
analysis of this problem is similar to that for a quantum mechanical multiple-well potential in
two dimensions, consisting of finite-step wells of circular shape. The resonant frequency shifts
correspond to tunnelling splittings in the energy levels of the quantum mechanical problem.
In this paper we give a theoretical analysis of tunnelling effects in this quantum-mechanical
context and describe qualitative conclusions that can be reached for the experiment. This
calculation provides a very clean application of a theory of tunnelling in near-integrable
systems [2] which has previously been difficult to explore and test in detail.

A semiclassical calculation of the splittings places one in the regime considered by
Wilkinson in [2], in which tunnelling rates between states supported on invariant tori of near-
integrable systems are calculated. The results obtained by Wilkinson give a very elegant
description of the tunnelling rate in terms of the geometry of the complexified tori in the region
of complex phase space where they intersect. If two tori are assumed to intersect transversally
in a section of complex phase space, the tunnelling rate between them is given in terms of
an action connecting the two real tori and a symplectically invariant measure of the angle of
intersection.
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Unfortunately, these appealing theoretical results are difficult to apply in practice. The
reason is that, in generic KAM-like systems, an analytic continuation of the tori is defined
only up to finite imaginary parts of the angle variables, where a natural boundary [3] is
encountered beyond which analytic continuation of the tori is meaningless. This natural
boundary is expected generically to be encountered before the intersection is reached [4]. Any
application of the semiclassical result must be made in tandem with some form of regularization
of the complexified tori in which classical dynamics is approximated in some way (and in fact
there is no reason to believe that such a regularization even exists in general). Examples of
applications to specific systems using various approximations of classical dynamics are to be
found in [5–7].

Any application to a KAM-like system necessarily combines classical approximations
with the semiclassical one and these are likely to strongly influence or even dominate the
accuracy of the final result. In the multiple-disc problem, however, no such difficulty is
encountered, allowing for the first time an implementation of Wilkinson’s formula in which
classical quantities are calculated exactly and without ambiguity. Direct analytic invariants
(angular momenta about the disc centres) are available for the invariant tori within each disc
and these allow straightforward analytic continuation as far into the forbidden regions as is
necessary. While describing the real classical dynamics exactly within a single disc, these
invariants are not global (in complexified dynamics) since the coupled problem does not have
a rotational symmetry. The invariant tori defined by them therefore intersect nontangentially
in the manner assumed by the Wilkinson calculation.

The geometry of the intersection can be completely characterized in terms of the disc
radii and inter-disc separation and Wilkinson’s formula for the splitting reduces to an explicit
expression in terms of these parameters. This calculation is outlined in section 3 for the case of
two identical discs, following an overview of the general theory of Wilkinson in section 2. In
the subsequent section an exact calculation is presented based on methods developed in [9–11]
for scattering from multiple-disc arrays. The results of the exact calculation are found to
agree well with Wilkinson’s approximation and furthermore allow an independent derivation
of the semiclassical result in this context. Finally, we discuss qualitatively in section 5 the
implications of these results for the measurements of Pance et al in [1].

2. Wilkinson’s theory in quantum mechanics

We begin by summarizing Wilkinson’s results as they apply to quantum mechanics in two
dimensions, formulating them in such a way that their geometry is emphasized. We assume
in this section that there are two families of congruent tori in phase space which may be
semiclassically quantized to produce WKB quasimodes ψL(x) and ψR(x) such that the exact
eigenfunctions may be approximated by

ψ±(x) = 1√
2
(ψL(x) ± ψR(x)). (1)

The corresponding energy-level splitting may be calculated using Herring’s formula [2]

�E ≈ h̄2
∫
�

(
ψ∗

L
∂ψR

∂n
− ∂ψ∗

L

∂n
ψR

)
dσ (2)

where � is any curve separating the two tori in configuration space. On substituting the WKB
approximations for the quasimodes and performing the integral using the stationary-phase
approximation we obtain Wilkinson’s formula,

�E ≈ A(h̄)e−K0/h̄. (3)
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The amplitude A(h̄) and exponent K0 are obtained from the geometry of the invariant tori
where they intersect in complex phase space, as we now explain. For simplicity we assume
here that there is a single intersection branch governing the tunnelling rate (more generally
one needs to sum over such intersections).

Denote by �L and �R the analytic continuations of the invariant tori to complex
coordinates. In the forbidden region between the real tori, let λL and λR be the branches of
these complexified tori from which the WKB quasimodes ψL(x) and ψR(x) are constructed.
That is, λL and λR are the local branches of �L and �R such that integrating p · dx along
them gives actions SL(x) and SR(x) with positive imaginary part, corresponding to local
WKB wavefunctions which decay into the forbidden region. Wilkinson’s formula is evaluated
in terms of the geometry of the intersection λ∗

L

⋂
λR. Note that, because λ∗

L and λR are each
invariant under (complex) evolution in time, the intersection λ∗

L

⋂
λR is expected generically to

be a complex curve of two real dimensions, parametrizable by a single complex time coordinate.
The complex action K0 is obtained by integrating p · dx along a closed curve � on

�L
⋃

�R, which goes from the local intersection λ∗
L

⋂
λR along �L to the conjugate local

intersection λL
⋂

λ∗
R and then returns along �R to the starting point in λ∗

L

⋂
λR. Then∮

�

p · dx = 2iK0

defines K0. For the simplest topologies we consider, in which a single surface of intersection
is relevant, K0 is real.

The amplitude A(h̄) is a measure of the degree of nontransversality of the intersection.
The local geometry of the surfaces λ∗

L and λR from which it is determined can be specified
in two ways: one can specify vectors which span their tangent spaces or give functions for
which they are simultaneous level sets. We begin with a specification of invariant functions.
In two dimensions we expect that λR, for example, is a simultaneous level set of two functions,
one of which should be the Hamiltonian if the surface is to be dynamically invariant. Let the
second function be IR(x,p) and let the corresponding function for λ∗

L be IL(x,p). Then the
amplitude in Wilkinson’s formula can be written in the form [4],

A(h̄) = 2

(
h̄

2π

)3/2 √
ωLωR

i{IR, IL} (4)

where ωL and ωR are frequencies of motion on the real tori and {IR, IL} denotes a Poisson
bracket, to be evaluated at any point on the intersection λ∗

L

⋂
λR. We note that the Jacobi

identity gives {{IR, IL}, H } = −{{IL, H }, IR} − {{H, IR}, IL} = 0 and so {IR, IL} is invariant
under time dynamics and does not depend on the point in λ∗

L

⋂
λR at which we evaluate it.

The frequencies ωL and ωR are with respect to action variables which are conjugate to IL and
IR respectively and we find that, for congruent tori such as we consider here, ωL = ωR.

The Poisson bracket may be reinterpreted in terms of the Hamiltonian flow vectors XL

and XR, determined by IL and IR respectively, giving

�LR ≡ i{IR, IL} = i�(XR, XL) (5)

where � is the symplectic form. In this form the interpretation of �LR in terms of the
transversality of the intersection is more transparent—it is the area of a parallelogram formed
by vectors tangent to each of λ∗

L and λR. In particular, note that in the integrable limit any
invariants are global and λ∗

L and λR become tangent and so the amplitude diverges (in which
case it should be replaced by a uniform approximation). In the case of a single contributing
intersection as assumed here, �LR is a positive real number. Reality follows from the fact
that any point on λ∗

L is mapped to a point on λR by a symmetry operation, σ say, which is
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Figure 1. The coordinates used in describing the local solutions and in the expansion of the Green
function. Note that the sense of positive θj changes from one disc to the other. The xy coordinates
are centred at the midpoint between the discs, with the x-axis along the centre–centre axis.

symplectic. We find therefore that, as vector fields, XL on λ∗
L maps under σ to XR on λR and

so �(XR, XL) = �(σXR, σXL) = �(XL, XR)
∗ = −�(XR, XL)

∗, as claimed.
Finally, we note that, confined to a section as defined for example by x ∈ � andH = E, the

intersection becomes an isolated point and the structure of the splitting is similar to a formula
for the overlap of WKB wavefunctions given in [8]. As in that case, one finds in higher
dimensions d that IL and IR become (d −1)-vectors of functions and the Poisson bracket term
becomes a determinant [8] (and in addition the power 3/2 in (4) becomes (d + 1)/2).

3. Application to the disc problem

We first apply the Wilkinson formula to the quantum mechanical problem of a double-well
potential consisting of two identical disc-shaped wells of uniform depth −V0 and radius a

whose centres are a distance 2b apart. The corresponding microwave-dielectric problem has
somewhat more complicated boundary conditions but shares the same general features. The
quantum mechanical problem also has a simpler exact solution as outlined in the section
following.

The exact solutions have a definite parity with respect to reflection in the y coordinate as
well as in the x coordinate. We therefore use localized states of the form

ψj(x) = 1√
1 + ε2

[ψm(rj , θj ) + εψ−m(rj , θj )] (6)

where j ∈ {L,R} and (rj , θj ) are polar coordinates centred around the respective disc centres
oriented as in figure 1. We denote by ψm(r, θ) the single-disc solution with azimuthal quantum
number m. When m �= 0 we let ε = ±1 designate the symmetry of ψj(x) with respect to
reflection in y and whenm = 0 we take ε = 0. We will also denote by k(E) = √

2(V0 + E) and
κ(E) = √−2E the real and imaginary wavenumbers inside and outside the discs respectively.
Henceforth we assume unit mass and set h̄ = 1.

When the localized states (6) are inserted in Herring’s formula, four contributions are
obtained, each of the form given in (3) and (4). There are identical contributions from the two
products in which single-disc solutions occur with the same sign in m and a separate pair of
identical contributions from those for which m occurs with opposing signs. We describe in
detail below the contributions of the first kind and delegate detailed discussion of the second
kind to the appendix.

With the conventions of figure 1, a pair of single-disc solutions with the same sign of
m corresponds to quantized tori of whispering gallery type in which trajectories rotate in
the clockwise direction in one disc and in the anticlockwise direction in the other. In the
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forbidden region between the discs, the angular momenta about the centres still take the real
values ±mh̄ but the radial momenta are imaginary. One finds in particular an intersection of
the complexified tori at a point in phase space whose configuration space component is the
midpoint between the discs. From these midpoint intersections we obtain the following total
contribution to the splitting:

�Emm = A2
m

[
2

(2π)3/2

ωr√
i{LR, LL}

]
e−*m. (7)

The imaginary phase *m depends on the separation between the discs and replaces K0/h̄.
Using the notation u = κa, v = ka and w = κb,

*m = 2(ξ(w,m) − ξ(u,m))

where

ξ(x,m) =
√
m2 + x2 + m ln

x

m +
√
m2 + x2

is the exponent arising in the asymptotic form of the modified Bessel functions. It is easily
verified that i*m/2 is the action integral from the boundary of a disc to the midpoint between
discs.

The term in square brackets in (7) is the amplitude given in (4). The role of the invariant
functions IL and IR is played by the angular momenta LL and LR about the respective disc
centres. One can show in general that for angular momenta L1 and L2 defined about different
centres O1 and O2 with relative displacement vector a = −−−→

O1O2, {L1, L2} = a ·p. Specializing
to the case above and evaluating at the intersection between tori,

i{LR, LL} = 2b
√
κ2 + m2/b2 = 2

√
w2 + m2.

Still in the square bracket, ωr is the radial frequency of motion within the disc, corresponding
to the radial action conjugate to the angular momentum. An explicit form for ωr will not be
required because it cancels in the final result.

The term Am before the square bracket arises because the connection formula relating the
wavefunction inside the disc to the solution in the forbidden region is not of the standard WKB
type, since the potential changes discontinuously. It is defined implicitly by

ψm(x) ∼ AmψWKB(x) as r → ∞
where ψWKB(x) is the solution with standard WKB normalization. Comparing the asymptotic
form of

ψm(r, θ) = Km(κr)

Km(κa)

eimθ√
2πa2Nm

for r > a (8)

with the standard WKB form we find

Am = 1

eξ(u,m)Km(u)

π√
ωra2Nm

where

Nm =
∫ v

0

[
Jm(η)

vJm(v)

]2

η dη +
∫ ∞

u

[
Km(ξ)

uKm(u)

]2

ξ dξ (9)

ensures the normalization of ψm(x).
Combining these conventions and definitions allows us to write (7) in the final form

�Emm = 1

a2Nm

[√
π

2

e−2ξ(w,m)

(w2 + m2)1/4

]
1

Km(u)2
. (10)
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Note that in our conventions 1/a2 is the fundamental quantum mechanical unit of energy. This
result is to be added to the total contribution to the Herring integral from single-disc solutions
with opposite signs in m (and pairs of tori with the same sense of rotation). It is shown in the
appendix that these are of the form

�E−m,m = 1

a2Nm

[
1

2

√
π

w
e−2w

]
1

Km(u)2
. (11)

The final value for the fractional splitting is then

�E ≈ �Emm + ε�E−m,m. (12)

Note that a steepest-descents integration of Herring’s formula requires only that the separation
between discs be sufficiently large and in particular we do not require that Km(u) be in the
asymptotic regime for these expressions to be valid. The formulas may hold for the ground-
state splitting, for example.

4. Reduction to a boundary-value problem

An independent derivation of (10)–(12) and exact numerical solutions are obtained by adapting
methods developed in [9, 10] for scattering from hard discs. These have been extended to the
case of scattering from dielectric discs in [11]. In our case the calculation is somewhat simpler
because we are interested solely in bound states and do not need to consider the scattering
matrix in the whole energy plane. We will therefore modify the approach of [9–11] so that the
calculation of the scattering matrix is bypassed. We first set up the basic method, following
which we indicate how (10) may be obtained from it by perturbative methods and finally we
compare the approximate results with numerically exact computation.

4.1. Derivation of the method

We seek a bound state ψ(x). This must satisfy

(∇2 + k2)ψ(x) = 0 for x in DL or DR (13)

(∇2 − κ2)ψ(x) = 0 for x outside DL and DR (14)

and is subject to the boundary condition

ψ(x) → 0 as |x| → ∞. (15)

In the quantum mechanical problem, we have in addition the boundary conditions that the
solution should be continuous and have continuous derivatives at the boundaries ∂DL and
∂DR of the discs DL and DR.

We consider expansions for ψ(x) in three different regions of space appropriate to the
three sets of boundary conditions imposed upon it. First, let (R, φ) be polar coordinates centred
at some reference point in the neighbourhood of the discs. Since ψ(x) must decay at infinity,
we assume it can be expanded for sufficiently large R in the form

ψ(x) =
∞∑

m=−∞
γmKm(κR)e

imφ. (16)

Next, we take advantage of the continuity conditions on the boundaries of the discs. Let
(rj , θj ), with j ∈ {L,R}, be polar coordinates centred at each of the discs. We assume that
inside each disc an expansion of the form

ψ(x) =
∞∑

m=−∞
αjm

Jm(krj )

Jm(v)
eimθj for x ∈ Dj (17)
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is admissable. In particular, the continuity conditions imply that on the boundary ∂Dj (and
just outside it) we may expand the wavefunction and its derivative in the forms

ψ(x(θj )) =
∞∑

m=−∞
αjmeimθj (18)

and

∂ψ

∂n
(x(θj )) = −1

a

∞∑
m=−∞

αjm

vJ ′
m(v)

Jm(v)
eimθj (19)

where the normal derivative is directed into the disc. We obtain quantization conditions by
matching the expansions (16), (18) and (19) and demanding consistency between them.

This matching is achieved using the free-space Green function,

G(x,x′) = − 1

2π
K0(κ|x − x′|) (20)

for the modified Helmholtz equation. Following [9–11], we let V be the region defined by
R � 1/δ and rj � a + δ and denote by ∂∞V and ∂jV the parts of the boundary respectively
corresponding to R = 1/δ and rj = a + δ. In the limit δ → 0 we obtain ∂jV → ∂Dj but ∂Dj

lies just outside V for small but finite δ. In particular, we obtain from the Green identity that,
for x ∈ ∂Dj , ∫

∂V

[
G(x,x′)

∂ψ(x′)
∂n′ − ∂G(x,x′)

∂n′ ψ(x′)
]

dσ ′ = 0. (21)

As in the scattering case, there are three kinds of contribution to this integral: from ∂∞V , from
∂j ′V with j ′ �= j and from ∂jV .

In this bound-state calculation, substituting the expansion in (16) and performing the
integral around ∂∞V following expansion of the Green function using the Bessel-function
addition theorems, we find no net contribution to the integral. We are therefore left with the
contributions from ∂j ′V , where we must consider separately the cases j = j ′ and j �= j ′. To
simplify the calculation, we consider explicitly the case x ∈ ∂DR and adopt the convention
for the angular coordinates θL and θR illustrated in figure 1. Following repeated expansion of
the Green function using Bessel-function addition theorems we find in the limit δ → 0 that
the contribution from ∂RV is

IRR =
∞∑

l,m=−∞
αRmDlm(E) eilθR

where

Dlm(E) = Il(u)δlm Km(u)

[
vJ ′

m(v)

Jm(v)
− uK ′

m(u)

Km(u)

]
(22)

and that the contribution from ∂LV is

IRL =
∞∑

l,m=−∞
αLmClm(E)eilθR

where

Clm(E) = Il(u)Kl+m(2w)Im(u)

[
vJ ′

m(v)

Jm(v)
− uI ′

m(u)

Im(u)

]
. (23)

Contributions to the case x ∈ ∂DL are obtained by permuting the disc labels in these
expressions.



3798 S C Creagh and M D Finn

The Green identity (21) evaluated on both boundaries then leads to the matrix equation(
D C

C D

) (
αL

αR

)
= 0.

In the limit w = κb → ∞ we find C → 0 and the solutions around the discs become
decoupled. The solutions of the resulting equation

Dαj = 0 (24)

are obtained from the roots of

uJm(v)Km
′(u) = vJm

′(v)Km(u) (25)

and these correspond to the solution for a single disc as expected.

4.2. Perturbative analysis

The solutions to the coupled problem can be projected onto the even and odd cases αL =
±αR = α, which are respectively solutions of

(D ± C)α = 0. (26)

This is easily solved by treating C perturbatively. First, however, it is convenient to rescale
the matrices so that they take the following symmetric forms:

D̃lm(E) = δlm

[
uK ′

m(u)/Km(u) − vJ ′
m(v)/Jm(v)

uI ′
m(u)/Im(u) − vJ ′

m(v)/Jm(v)

]
Km(u)

Im(u)
(27)

and

C̃lm(E) = Kl+m(2w). (28)

Solutions of the uncoupled equation (24) are represented by vectors (α)l = δlm with E a
root of (25). These are nondegenerate if m = 0 but are degenerate with (α)l = δl,−m if m �= 0.
Applying nondegenerate and degenerate perturbation theory respectively yields

�E ≈ 2Qmm(E)

D̃′
mm(E)

(29)

for the splitting at first order, where

Qmm(E) = C̃mm(E) + εC̃−m,m(E) = K2m(2w) + εK0(2w) (30)

and ε ∈ {0,±1} is defined following the conventions described below (6). Because the
numerator in the square bracket of (27) vanishes at the quantization condition (25), we have

D̃′
mm(E) =

[
uK ′

m(u)/Km(u) − vJ ′
m(v)/Jm(v)

]′

uI ′
m(u)/Im(u) − uK ′

m(u)/Km(u)

Km(u)

Im(u)

=
[
uK ′

m(u)

Km(u)
− vJ ′

m(v)

Jm(v)

]′
Km(u)

2

where the second line follows from the first on substitution of the Wronskian
W {Km(u), Im(u)} = 1/u. By direct integration of (9) it is possible to show that the derivative
term is simply [

uK ′
m(u)

Km(u)
− vJ ′

m(v)

Jm(v)

]′
= 2a2Nm

and (29) can therefore be written in the form

�E ≈ 1

a2Nm

K2m(2w) + εK0(2w)

Km(u)2
. (31)
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0 a 2a00
 0.25

 0.30

 0.35

eκd
∆E

d

Figure 2. The solid curve gives the dependence of the scaled splitting eκd�E on the interdisc
spacing d as determined from the zeros of �±(E). The upper and lower dashed curves are
respectively the fully semiclassical Wilkinson formula and the perturbative approximation (31).
The splitting shown corresponds to the ground state of wells with a = 1 and V0 = 10. Excited
states exhibit qualitatively similar behaviour.

On substitution of the asymptotic form [12]

K2m(2w) ∼
√
π

2

e−ξ(2w,2m)

[(2w)2 + (2m)2]1/4

this reduces to Wilkinson’s formula (10)–(12). Note that, while (10) is accurate to relative
order O(1/w) in the large parameter w = κb, (31) is exponentially accurate since the only
approximation has been a perturbative one in the exponentially small matrix C.

4.3. Numerical solution

The original forms for D and C given in (22) and (23) are better suited to numerical analysis
than the symmetric forms above because they are better behaved as l, m → ±∞—we find, for
fixed (u, v,w), that Dmm ∼ 1 + O(1/m2) and Clm → 0 whereas elements of the symmetric
forms diverge. In particular, the determinant

�±(E) = det(D(E) ± C(E))

exists and the energy levels may be determined from its zeros.
While the determinant converges relatively slowly with truncation dimension M , the roots

themselves converge quite rapidly. For moderate values of the system parameters, convergence
to machine precision can be achieved for M ∼ 10 or less. We present some specific numerical
results in figure 2. Only as the interdisc spacing d = 2(b − a) approaches zero do we find
a marked difference between the approximations we have developed and the exact splitting.
Furthermore, the exponential accuracy of (31) for larger values of the spacing is confirmed.
Although numerically less accurate, the raw semiclassical formula (10)–(12) captures the same
qualitative features while incorporating the geometry of the problem in a more obvious way.

Note finally that variation with d of the scaled splitting eκd�E as seen in figure (2) is an
intrinsically multi-dimensional feature. The analogous quantity in a one-dimensional problem
would be constant.

5. Splittings of electromagnetic resonances

The methods outlined in the previous sections may also be applied to electromagnetic
resonances of the kind reported in [1]. They are complicated by the fact that the relevant
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wave equation has a vector rather than a scalar character and the fact that derivatives may
be discontinuous at the disc boundaries, but the same general conclusions are reached [13].
Ignoring dissipation, resonant frequencies of two identical dielectric discs placed in a
microwave cavity exhibit a small splitting which varies with disc spacing in the same way
as the energy splitting in (31). The only difference is that there is a different numerical
constant in front (determined as before by the solution for a single disc).

In particular, this calculation predicts a frequency splitting which decays faster
asymptotically than e−κd , where κ and d are respectively the decay constant in the evanescent
region and the interdisc spacing (as before). In contrast, the frequency splittings reported
in [1] decayed more slowly than e−κd . The most likely explanation for this seems to lie in
the presence of dissipative effects, ignored in the present calculation. The slower decay of
the experimentally measured splittings indicates that the finite lifetime of the states plays a
dominant role there.

We note finally that, in the context of dielectric waveguides and resonators, there has
been a longstanding interest in coupling between optical fibres [14]. Exponentially accurate
estimates of coupling strengths similar to (31) are to be found in [15], for example. While
possibly less accurate numerically, the Wilkinson approach has the advantage of incorporating
the geometry of the problem in a more explicit and simple way. The approach outlined above
might therefore have the advantage of being applicable to complex problems where the more
accurate methods are difficult to apply.

6. Conclusion

We have verified that Wilkinson’s formula gives a successful quantitative analysis of tunnelling
effects in disc problems. The result is a simple prediction for this multi-dimensional
tunnelling problem, which can be stated invariantly in terms of the symplectic geometry of the
complexified tori. It agrees quantitatively with more accurate methods derived from reduction
to a boundary value problem. The results, when compared to the experimental measurements
of Pance et al [1], show a relatively more rapid decay of the resonant-frequency splitting,
indicating that dissipation plays an important role in that experiment.
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Appendix. Contribution from the second intersection

The contribution to the splitting in (11) comes from the intersection of tori for which the
angular momentum about each centre is the same. It is geometrically clear that any point in
phase space lying on this intersection must have a momentum vector that is parallel to the
axis joining the centres. In Cartesian coordinates we then have py = 0 and px = −iκ (the
sign on the latter being chosen to give a radially growing imaginary action for ψR(x)). The
constraint that the clockwise angular momentum be m gives y = −im/κ . The intersection is
then a two-real-dimensional complex line, which is naturally parametrized by the remaining
(generally complex) coordinate x.

The Poisson bracket term evaluated on this intersection is

i{LR, LL} = 2ibpx = 2κb = 2w.
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A straightforward but tedious calculation also allows us to confirm that an action integral
along the respective torus branches starting at a point on the boundary of one disc, going to
the intersection and on to the symmetric image on the second disc gives∫

p · dx = 2i(κb − ξ(κa,m)).

From a similar sequence of manipulation to that outlined in section 3, we then obtain the partial
contribution to the splitting given in (11).
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